

Mark Scheme

≀u.	Expected answers	Mar
•	reaction with cyclohexene (electrophilic) addition \checkmark allow 'added', 'adds' etc allow molecular formulae in the equations $(\pi$ -)electrons are localised \checkmark not delocalised \checkmark	ar
	reaction with benzene (electrophilic) substitution ✓ allow Br ⁺ to gi	ve
	$+$ Br ₂ $+$ HBr $+$ HBr equation $(\pi$ -)electrons are delocalised \checkmark	
	reaction with phenol (electrophilic) substitution ✓	
	OH OH Br + 3HBr	
	Br	
	valid discussion of relative electron density (around the ring) ✓	
	valid discussion of relative polarisation of the bromine or the (electrostatic) attraction of electrophiles to the ring ✓ any 10 out of 11 marks	10
QWC	Mark for at least two sentences or bullet points in context with correct spelling, punctuation and grammar ✓	1
		11

Qu.	Expected Answers		Mark
5 (a)	hex-3-en al	ALLOW 'ene' ALLOW '-1-al'	2
(b)	Br Br		
	NaBH ₄ / A H^+ / Cr_2O_7 $Polymerisation$	CH₃CH₂CH≔CHCH₂COOH	
	CH ₃ CHO CH ₃ CHO		
	addition polymer attempted with two repeats ✓ corre	ect side chains ✔	5
(c)	CH ₃ CH ₂ CH ₂ CHO CH ₃ CH ₂ H C=C C CH ₂ CHO	ALLOW one mark for two correct structures with incorrect labels	

Qu.	Expected Answe	rs			Marks
6 (a)	red / orange / yell To distinguish b warm with ✓	nydrazine / Brady's ow solid / ppt / ci etween aldehyde o r nitrate / Tollens' re	rystals ✓	etc fo 2nd r ALL0 other nirror) ✓ suital tests Fehlii	ow stallise or the nark ow any ole e.g. ngs,
				MnO.	, 5
(b) (l)	M written next to t	he peak at <i>mle</i> = 1	06 ✓		1
(ii)	C7H6O / C6H5CHC) C = 7	7	ALLOW e H5 if the p 105 labelle	eak at
(c)	H—C—C— H H H H H H H—C—C	<u> </u>	H H H H-C-C-C-CHO H CH ₃ H H CH ₃ H-C-C-CHO H CH ₃	,	4
		'		'	
(d)		D 3 peaks rai3:1:6 ✓	E 4 peaks ratio: 3:2:2:3✓	F 2 peaks ratio: 2:3 /4:6	
	"'' /	0.7–1.6	2.0-2.9 (×2) 0.1-1.6 1.2-1.4	2.0 2.9 0.7–1.6 √	
	AW to describe	singlet doublet / 1:1 ✓ (multiplet) on D and E	singlet 2 x frigget / 1:2:1 ✓ (multiplet) RE any splitting given for	triplet / 1:2:1 qua.: 1 1:3:3:1 ✓	9
QWC	For at least two	evant sentences in	n which the meaning is ALLOW bullet points ar	clear with correct	
					[Total: 12

	Expected Answers	Ma
(a) (l)	l mechanism	
(a) (i)	arrow from C of CN to C	
7 70	apole and curly arrow breaking π-bond on C=O ✓	
	sharpere of the intermediate ✓ curiys row to H of HCN / H₂O / H ⁺ ✓	
	CUNIVERSITION TO HIGH / H2O / H V	
	e.g.	
	_ H-CN -CN	
	OH OH	
	$H_3C \xrightarrow{\delta} C$ $H_3C C$	
	ĊN CN	
	ALLOW NaOH /	
	reagents HCN + KCN / H₂SQ KCN HCN	5
(ii)	type of reaction: hydrolesis ✓	
(11)		
	equation - e.g.	
	$CH_3CH(CH)CC + 2H_2O \longrightarrow CH_3CH(OH)COOH + NH_3$ $CH_3CH(CH)COOH + NH_4$	
	H ₂ O 1 M ₃ ✓ rest of the equation and balancing ✓	3
11.3	No exist has a shired context trustical terms are	
(b)	actic acid has a chiral centre / optical isomers ✓	
	The section of the se	1
	laboratory sample has both optical isomers / stereoisomers DO NOT ALLS	
	Termentation would demand only one optical somers / stereoisomers DO NOT ALLO	Ž
(c) (i)		3 2
(c) (i)		5 2
(c) (i)		3 2
(c) (i)		2
	Termentation would some one optical somer AW CH ₃ O CH ₃ H O-C-C- H O ester link ✓ rest of structure also correct ✓	2
(c) (i)	Termentation would somewhy one optical isomer AW CH ₃ CH ₃ CH ₃ H O-C-C- H O-C-C- H C ester link ✓ rest of structure also correct ✓ renewable = made from plants that can be grown AW	2
	Termentation would some only one optical isomer AW GH ₃ O CH ₃ H O CCCC H O ester link ✓ rest of structure also correct ✓ renewable = made from plants that can be grown AW biodegradable = broken down by bacteria etc AW	2
	Termentation would some only one optical isomer AW GH ₃ O CH ₃ H O ester link ✓ rest of structure also correct ✓ renewable = made from plants that can be grown AW biodegradable = broken down by bacteria etc AW reason linked to biodegradability	2
	renewable = made from plants that can be grown AW biodegradable = broken down by bacteria etc AW reason linked to biodegradability e.g. less landfill / less harm to animals / broken down by hydrolysis / no need to burn so	2
	renewable = made from plants that can be grown AW biodegradable = broken down by bacteria etc AW reason linked to biodegradability e.g. less landfill / less harm to animals / broken down by hydrolysis / no need to burn so no harmful gases etc AW ora reason linked to renewability	
	renewable = made from plants that can be grown AW biodegradable = broken down by bacteria etc AW reason linked to biodegradability e.g. less landfill / less harm to animals / broken down by hydrolysis / no need to burn so no harmful gases etc AW ora	2
(ii)	renewable = made from plants that can be grown AW biodegradable = broken down by bacteria etc AW reason linked to biodegradability e.g. less landfill / less harm to animals / broken down by hydrolysis / no need to burn so no harmful gases etc AW ora reason linked to renewability e.g. does not increase atmospheric CO₂ AW ora ANY two for ✓✓	
(ii)	rementation-weak-somain-only one-optical somer AW ——————————————————————————————————	
(c) (i) (ii)	renewable = made from plants that can be grown AW biodegradable = broken down by bacteria etc AW reason linked to biodegradability e.g. less landfill / less harm to animals / broken down by hydrolysis / no need to burn so no harmful gases etc AW ora reason linked to renewability e.g. does not increase atmospheric CO ₂ AW ora ANY two for ✓✓ 2CH ₃ CH(OH)COOH	

Qu.	Expected answers		Marks
3 (a)	O —C—O— circled ✓	allow the right hand carbon included	1
(b) (i)	hexan(e)dioic acid	ignore -1,6-	1
(ii)	HOOC ———————————————————————————————————	do not allow C₅H₄ here do not allow OĤ here	2
(c) (i)		must be fully displayed here	
		allow one mark for two correct structures of hexanal	
			2
(ii)		v correct structural / layed / skeletal formula	1
(iii)	(O–H) absorption appears at 2500–3300 (cm ⁻¹)		• 1
(d)	C ₂ H ₅ H C ₂ H ₅ H		1
(e)	ecoflex® = condensation and poly(but-1-ene) = addition		1
46	atactic has side chains on random sides 🗸 do not allowing to		
	isotactic has citt snams on the same side allow on or 3D) diag	nor just 'groups' mark for a correct (2D gram on sea stic with at not scored in words	2
			2

Qu.	Expected answers	Marks	
2 (a)	H₂NCH(R)COOH ✓ (allow any order as long as CH not split)	1	
(b)	glutamic acid has / glycine does not have a chiral carbon / four different groups attached to a carbon ✓		
	glutamic acid forms two non-superimposable (mirror images) / is asymmetric ✓		
	COOH COOH allow ECF on side group HOOC(CH ₂) ₂ NH ₂ H ₂ N (CH ₂) ₂ COOH errors		
	correct 3-D diagram of one isomer of glutamic acid ✓ connectivity attempt at a 3-D diagram to show the other isomer ✓ here	4	
(c) (i)	H ₃ N ⁺ —C—COOH allow poor connectivity here too	1	
(ii)	H_2N — C — COO^- (CH ₂) ₂ COO^- one COO \checkmark rest of the molecule \checkmark		
	one coop rest of the molecule r	2	
(d)	at least one peptide linkage H ₂ N — C — C — N — CH ₂ — COOH H ₂ N — CH ₂ — C — N — C — COOH or the dipeptide formed using the glutamic acid side chain	3	
(e) (i)	(conc) H₂SO₄ ✓ allow HCl or H ⁺ but not anything with H₂O present		
(ii)	H_2N — C — $COOC_2H_5$ $CCH_2)_2$		
	COOC₂H₅ one ester group ✓ rest of the structure ✓	2	
		14	