

Paddington Academy The best in everyone™

Part of United Learning

OCR A2 CHEMISTRY UNIT 5 MODULE 1

ASSESSMENT POINT 1

54 MINUTES 45 MARKS

) Comment a ba				(aq), forming iodine, I aa) I⁻(aa) and H⁺(aa
(a) Suggest a balanced equation for the overall reaction between $\rm H_2O_2(aq)$, form aqueous iodine.				
) Three experi	iments were carrie †(aq).The initial rate	ed out using differ $_{2}$	erent initial conc was measured fo	entrations of H ₂ O ₂ (a r each experiment.
	` " ental results are sho			
experiment	[H ₂ O ₂ (aq)] /mol dm ⁻³	[I ⁻ (aq)] /mol dm ⁻³	[H ⁺ (aq)] /mol dm ⁻³	rate /mol dm ⁻³ s ⁻¹
1	1 0.050 0.010 0.0 2 0.050 0.020 0.0	0.010	0.005	5.75×10^{-6} 1.15×10^{-5}
2		0.020		
3		0.010	2.30 × 10 ⁻⁵	
(i) Showing	g all your reasoning	, determine the ord	ers of reaction for	r I ⁻ and H ⁺ .
(i) Showing		, determine the ord		
(i) Showing				
(ii) This rea	action is first order v	vith respect to H ₂ O	2.	
(ii) This rea	action is first order v	vith respect to H ₂ O	2. 5 write the rate eq	
(ii) This rea	action is first order v	vith respect to H ₂ O our answers to (i) to	2. o write the rate eq	uation for this reactio

2

Answer all the questions.

1 The preparation of ethyl ethanoate from ethanoic acid and ethanol is a reversible reaction which can be allowed to reach equilibrium.

$$CH_3COOH + C_2H_5OH \rightleftharpoons CH_3COOC_2H_5 + H_2O$$

(a) Write the expression for $K_{\rm c}$ for this equilibrium system.

[1]

- (b) A student mixed together 8.0 mol ethanoic acid and 14.5 mol ethanoi. A small amount of hydrochloric acid was also added to catalyse the reaction. He left the mixture for two days to reach equilibrium, after which time 1.5 mol ethanoic acid remained.
 - (i) Complete the table below to show the equilibrium composition of the mixture.

component	CH3COOH	C ₂ H ₅ OH	CH ₃ COOC ₂ H ₅	H ₂ O
initial amount/mol	8.0	14.5	0.0	0.0
equilibrium amount/mol				

[2]

(ii) Calculate K_c to two significant figures.

The total volume of the equilibrium mixture is 1.0 dm³.

$$K_{c} = \dots [2]$$

(c)	The	student added more ethanol to the mixture at constant temperature.
	(i)	State, giving a reason, what would happen to the equilibrium composition of the mixture.
		[1]
	(ii)	What happens to the value of K_c ?
		[1]
(d)	Stat the	e, giving a reason, what would happen to the equilibrium position if the concentration of acid catalyst were to be increased.
		[2]
(e)		student repeated the experiment at a higher temperature and found that the value of $K_{ m c}$ reased.
	Ехр	lain what additional information this tells you about this reaction.
	•••••	
		[2]
		[Total:(11])

		•
This	que	estion looks at several acids.
(a)	Hyd the	Iroiodic acid, HI(aq), is a strong acid that is an aqueous solution of hydrogen iodide gas. In laboratory, hydroiodic acid is prepared by the method below.
	gas	nixture of iodine and water is put into a flask. The mixture is stirred and hydrogen sulphide $_{\rm S}$, $_{\rm H_2S}$ (g), is bubbled through the mixture for several hours. The mixture becomes yellow as phur separates out.
	The	sulphur is filtered off and the solution is purified by fractional distillation.
	A 2	25 cm ³ sample of hydroiodic acid is collected containing 47.2g of HI.
	(i)	Construct a balanced equation, with state symbols, for the preparation of hydroiodic acid from iodine and hydrogen sulphide.
		[2]
	(ii)	Calculate the pH of the hydroiodic acid sample that is collected.
		pH =[2]
(h)	₽ŧh	anoic acid, CH ₃ COOH, is a weak acid with a K_a value of 1.70 $ imes$ 10 ⁻⁵ mol dm ⁻³ .
(D)		
	(i)	Write an equation for the dissociation of ethanoic acid.
		[1]
	(ii)	The concentration of ethanoic acid in a solution X was 2.74×10^{-3} mol dm ⁻³ .

	[2]
pH =	 [3]

Calculate the pH of solution X.

3

(i	iii)	When ethanoic acid is mixed with hydroiodic acid, an acid-base reaction takes place.		
		Complete the acid-base equilibrium that is set up and identify the acid-base pairs.		
	•	label one conjugate acid-base pair as acid 1 and base 1,		
	•	label the other conjugate acid-base pair as acid 2 and base 2.		
		+ + +		
		[2]		
(c)	Met and	hanoic acid, HCOOH, is an ant's main defence mechanism, squirted at potential intruders injected in 'ant bites'.		
	(i)	The recommended treatment for an ant bite is 'bicarbonate of soda', which contains ${\rm NaHCO_3}$.		
		Suggest, with an equation, how $NaHCO_3$ helps to relieve the effect of an ant bite.		
		[2]		
((ii)	Wasp stings are treated with vinegar. What does this suggest about the nature of the active ingredient in a wasp sting? Explain your answer.		
		[2]		
((iii)	Methanoic acid can be used in buffer solutions.		
		Calculate the pH of a buffer solution containing equal volumes of 0.75 mol dm ⁻³ methanoic acid and 1.92 mol dm ⁻³ sodium methanoate.		
		For HCOOH, $K_a = 1.60 \times 10^{-4} \text{ mol dm}^{-3}$.		

nH =[2

[Total: 16]

Turn over

4 (a) A student analysed an unsaturated branched carboxylic acid, A, using a titration procedure.

The student dissolved 1.368 g of the compound in water and made the solution up to 100.0 cm³. The student titrated 25.0 cm³ of this solution with 0.152 mol dm⁻³ NaOH. The volume of NaOH(aq) required to reach the end-point was 19.80 cm³.

Each molecule of **A** has one acidic hydrogen atom and it behaves as a monoprotic (monobasic) acid.

- Calculate the molar mass of the unsaturated branched carboxylic acid A.
- Determine the molecular formula and show two possible structural isomers of the unsaturated branched carboxylic acid A.