WASHINGTON LATIN PUBLIC CHARTER SCHOOL CHEMISTRY 2019-20

UNIT 5A - CHEMICAL REACTIONS I - ACIDS AND BASES
TEST

SECTION A - OPEN RESPONSE

1. Neutralization reactions are reactions between acids and bases to produce salts. They have a variety of uses, including making different salts.

Complete the following table to show the names and formulas of different acids, bases and salts.

Clue: if it contains H^{+}, it's an acid; if it contains hydroxide, oxide or carbonate, it's a base; otherwise it's a salt

UNIT 5A - CHEMICAL REACTIONS I (ACIDS AND BASES)

| (b) | State what you would see as reaction (a) (ii) was taking place | |
| :--- | :--- | :--- | :--- |
| | MgCO is a solid - what will happen to it
 Look at the products - what will you see? | 2 |
| | TOTAL | 11 |

2. The acidity or alkalinity of a solution can be captured in a single number, called the pH .

The acidity or alkalinity of a solution can also be determined by using acid-base indicators. Two common indicators are methyl orange and phenolphthalein. The colors and end-point pH ranges of these indicators are shown in the table below:

Indicator	Color 1	pH range	Color 2
bromothymol blue	yellow	$6.0-7.7$	blue
phenolphthalein	colorless	$8.3-10.0$	pink

A sample of lemon juice was analysed and found to have a pH of 3
A sample of blood was analysed and found to have a pH of 7
A sample of $0.1 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide was also analysed
Complete the following table:

Sample	pH	acidic, neutral or alkaline? Look at the pH	Color it turns bromothymol blue	Color it turns phenolphthalein
Lemon juice	3		Use the chart in the question	Use the chart in the question
Blood	7		Use the chart in the question	Use the chart in the question
Hydrochloric acid		Use the chart in the question	Use the chart in the question	5
TOTAL				

Lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$, is a weak acid.
3. Xondra had a solution of lactic acid of unknown molarity. She determined the molarity of the lactic acid solution by carrying out a titration with $0.10 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide solution using phenolphthalein indicator.
She found that 21.5 mL of the lactic acid solution were required to react with 25 mL of the sodium hydroxide solution.

(a)	Describe in detail how Xondra would perform the titration. Include the names of any equipment used.	You need to mention pipette, burette and conical flask Then follow the procedure on the final page of the study guide
(b)	Calculate the molarity of the lactic acid solution. $\mathrm{C}_{2}=\frac{C_{1} V_{1}}{V_{2}}$.	4
	$\mathrm{C} 1=0.1, \mathrm{~V} 1=25 \mathrm{~mL}, \mathrm{~V} 2=21.5 \mathrm{~mL}$	3
(c)	Describe the change in color Xondra would see when the lactic acid had been completely neutralized.	2
	What is the indicator? Look at the table in question 2.	9
TOTAL		

SECTION B - MULTIPLE CHOICE

Do not answer these questions on this document. Click on the answer sheet provided at the end of the questions.

4.	When copper oxide reacts with sulfuric acid, the name of the salt produced is	
	A	copper acid
	B	copper sulfate
	C	sulfuric oxide
	D	sodium chloride
		2

5. A solution of wood bleach has a pH of 2. It could be described as:

Look at the table in the study guide linking pH to acidity
Low $\mathrm{pH}=$ acidic, high $\mathrm{pH}=$ alkaline

	A	strongly acidic
	B	weakly acidic
	C	neutral
	D	weakly alkaline
	E	strongly alkaline

6.	Which of the following solutions has the highest pH ? Low $\mathrm{pH}=$ acidic, high $\mathrm{pH}=$ alkaline - which solution is an alkali?	
	A	1 mol/L ammonia
	B	Vinegar
	C	pure water
	D	1 mol $/ \mathrm{L}$ hydrochloric acid
	E	orange juice

7.	What would happen if MgO powder was added separately to 50 mL of 0.5 mol/L HCl and $0.5 \mathrm{~mol} / \mathrm{L}$ lactic acid? Look at the answer key to practice test Q3 for the differences between strong and weak acids	
	A	The lactic acid would dissolve more MgO but more slowly
	B	The lactic acid would dissolve less MgO and more slowly
	C	The lactic acid would dissolve the same amount of MgO but more slowly
	D	The lactic acid would dissolve the same amount of MgO and at the same rate.

	E	The lactic acid would dissolve more MgO and more quickly.
	2	

Now proceed to the answer sheet

